The use of computer vision technologies to monitor the availability of bakery products on shelves in real time

Authors

  • Yuri V. Zabaykin Gubkin Russian State University of Oil and Gas

Keywords:

computer vision, bakery industry, product availability contro, video analytics, deep learning, convolutional neural networks, process optimization, innovative technologies

Abstract

The rapid development and introduction of innovative technologies, in particular computer vision, opens up new prospects for optimizing processes in various industries, including the baking industry in Russia. This study is devoted to the study of the possibilities of using computer vision systems to control the availability of bakery products on store shelves in real time. The work analyzes existing solutions based on computer vision technologies and evaluates their effectiveness in the context of the Russian bakery market. Research materials and methods include the analysis of scientific publications, patents and practical cases related to the use of computer vision in retail, as well as conducting a series of experiments in real stores. During the experiments, video surveillance systems with a resolution of 1080p and a frame rate of 30 fps were used, as well as specialized software for image processing and analysis based on deep learning algorithms and convolutional neural Networks (CNN). The results of the study demonstrate that the introduction of computer vision technologies makes it possible to increase the effectiveness of monitoring the availability of bakery products on store shelves by 25-30% compared with traditional methods based on manual monitoring. The computer vision system is capable of determining the presence or absence of goods on the shelf in real time with up to 95% accuracy, as well as identifying specific types of bakery products. In addition, the use of computer vision can reduce staff labor costs by 15-20% and reduce sales losses associated with the absence of goods on the shelves by an average of 10-12%.

References

Акулич И. Л., Голик В. С. Автоматизация и цифровизация маркетинга. - 2020.

Бардовский В.П. Разработки стратегии инновационного развития компании // Образование и наука без границ: фундаментальные и прикладные исследования. 2020. № 11. С. 45-48.

Бондаренко А.М., Мисинева И.А. Развитие инноваций в организациях сферы торговли: зарубежный опыт // Актуальные проблемы авиации и космонавтики. 2022. № 2

Исаенкова Д.Г., Халиков М.А. Инновационная деятельность и стратегия российских предприятий розничной торговли // Вестник Алтайской академии экономики и права. 2019. № 11-1. С. 77-83.

Косарева О.А. Информационные технологии для розничных торговых предприятий // Вестник Академии. 2019. № 2. С. 28-39.

Курганова Н.Ю., Чернухин А.М. Современные программы продвижения в розничных торговых сетях // Проблемы теории и практики управления. 2019. № 12. С. 60-68.

Родионова Т.Г., Крюкова И.В. Перспективы внедрения инноваций в системе розничной торговли // Финансовый бизнес. 2020. № 6(209). С. 160-163.

Садыкова Л.Н., Константинова Л.Ф. Факторы инновационной стратегии развития компании // Global and Regional Research. 2020. Т. 2. № 1. С. 39-45.

Фомин И. Механизмы внедрения инноваций в практику деятельности компаний. 2019.

Храмова А.В. Бихевиористический подход к кастомизации торгового бизнеса в современных условиях // Современная конкуренция. 2020. Т. 14. № 3 (79). С. 66-78.

Чернухина Г.Н., Ермоловская О.Ю. Когнитивные технологии в торговле в условиях цифровизации России // Вестник Академии. 2019. № 2. С. 96-103.

Чернухина Г.Н., Храмова А.В. Перспективы внедрения интеллектуальных ресурсов в цифровую среду торгового предпринимательства // Современная конкуренция. 2021. Т. 15. № 2(82). С. 77-87.

Erevelles S., Fukawa N., Swayne L. Big Data consumer analytics and the transformation of marketing //Journal of business research. 2016. Т. 69. №. 2. С. 897-904.

Sterne J. Artificial intelligence for marketing: practical applications. John Wiley & Sons, 2017.

Westermann A., Forthmann J. Social listening: a potential game changer in reputation management How big data analysis can contribute to understanding stakeholders' views on organisations // Corporate communications: An International journal. Vol. 26. № 1. pp. 2-22.

Additional Files

Published

2024-03-30

How to Cite

Zabaykin, Y. V. (2024). The use of computer vision technologies to monitor the availability of bakery products on shelves in real time. Bakery of Russia, 68(1), 13–22. Retrieved from https://hbreview.ru/index.php/hb/article/view/31

Issue

Section

TECHNOLOGY AND PRODUCTION